Chapter 14 Review Exercise Solutions

R14.1

Searching means to find an element in a collection of elements. Sorting means to arrange a collection of elements in a particular order.

R14.2

Array length 0 or 1: i < a.length - 1 is not true when i equals 0, the for loop in the sort method never executes and the array is unchanged. That is ok.

Array length 2: The for loop in sort executes once, with i = 0. minimumPosition(a, 0) is called. The for loop in that method executes with from = i and going from 1 to less than 2; i.e., that loop also executes once. minPos is initially 0. If a[1] is less than a[0], then minPos is set to 1. When the method returns, the two values are swapped, which causes the array to be sorted.

Array length 3: There are six possible variations of the array. Using 1, 2, 3 for the three elements, they are

1 2 3

1 3 2

2 1 3

2 3 1

3 1 2

3 2 1

Here is a walk-through for the last scenario. The others are similar.

                sort   minimumPosition

a[0] a[1] a[2]  i      from  minPos   i

3    2    1     0        0     0      1

3    2    1     0        0     1      2

3    2    1     0        0     2

1    2    3     1        1     1      2

1    2    3     1

R14.3 

	n 2+2n+1
	O(n2)
	n3-1000n2+109
	O(n3)

	n10+9n9+20n8+145n7
	O(n10)
	n + log(n)
	O(n)

	(n + 1)4
	O(n4)
	n2 + n log(n)
	O(n2)

	(n2 + n)2
	O(n4)
	2n+n2
	O(2n)

	n+0.001n3
	O(n3)
	(n3+2n)/(n2+0.75)
	O(n)


R14.4 

	T(2000)/T(1000)
	2004997/502497=3.99
	f(2000)/f(1000)
	4

	T(4000)/T(1000)
	8009997/502497=15.94
	f(4000)/f(1000)
	16

	T(10000)/T(1000)
	50024997/502497=99.55
	f(10000)/f(1000)
	100


R14.5 
For a set of 2000 records, it will take 10 seconds. 

For a set of 10,000 records, it will take 50 seconds.

R14.6
	
	O(n)
	O(n2)
	O(n3)
	O(n log(n))
	O(2n)

	1000
	5
	5
	5
	5
	5

	2000
	10
	20
	40
	11
	can't compute

	3000
	15
	45
	135
	17
	…

	10000
	50
	500
	5000
	67
	…


In the last column, the values get large too quickly. The following may be more helpful:

	
	O(2n)

	1000
	5

	1001
	10

	1002
	20

	1003
	40


R14.7 
O(log (n))

O(sqrt(n))

O(n)

O(n log (n))

O(n sqrt(n))

O(n2 log (n))

O(n3)

O(n log (n))

O(2n)

O(nn)

R14.8 

The array needs to be traversed once to find the minimum, so the time complexity is O(n), where n is the length of the array. Finding both the minimum and the maximum is no worse than 2O(n) = O(n)

R14.9 

The complexity of the given method is O(n).
R14.10

a)         4 7 11 4 9 5 11   7   3   5

Run 1: 3 7 11 4 9 5 11   7   4   5

Run 2: 3 4 11 7 9 5 11   7   4   5

Run 3: 3 4   4 7 9 5 11   7 11   5

Run 4: 3 4   4 5 9 7 11   7 11   5

Run 5: 3 4   4 5 5 7 11   7 11   9
Run 6: 3 4   4 5 5 7   7 11 11   9
Run 7: 3 4   4 5 5 7   7   9 11 11

Run 8: 3 4   4 5 5 7   7   9 11 11

b) –7 6 8 7 5 9 0 11 10 5 8

Run 1: –7 6 8 7 5 9 0 11 10   5   8

Run 2: –7 0 8 7 5 9 6 11 10   5   8

Run 3: –7 0 5 7 8 9 6 11 10   5   8

Run 4: –7 0 5 5 8 9 6 11 10   7   8

Run 5: –7 0 5 5 6 9 8 11 10   7   8

Run 6: –7 0 5 5 6 7 8 11 10   9   8
Run 7: –7 0 5 5 6 7 8   8 10   9 11
Run 8: –7 0 5 5 6 7 8   8   9 10 11

Run 9: -7  0 5 5 6 7 8   8   9 10 11
R14.11

a) 5 11 7 3 5 4 7 11 4 9

split:     5 11 7 3 5  




4 7 11 4 9


split:     5 11   


7 3 5


4 7


11 4 9
split:     5
   11

7
3 5 

4
7

11
4 9
split: 




3
5




4
9
merge:  



3 5





4 9
merge:  5 11 


3 5 7


4 7


4 9 11
merge:  3 5 5 7 11




4 4 7 9 11
merge:  3 4 4 5 5 7 7 9 11 11
b) 9 0 11 10 5 8 –7 6 8 7 5

split:    9 0 11 10 5




8 –7 6 8 7 5
split:    9 0 

11 10 5


8 -7 6


8 7 5
split:
9
0
11
10 5


8
-7 6

8
7 5
split:



10
5


-7
6

7
5
merge: 


5 10



-7 6


7 5
merge: 0 9

5 10 11


-7 6 8


5 7 8
merge: 0 5 9 10 11




-7 5 6 7 8 8
merge: -7 0 5 5 6 7 8 8 9 10 11
R14.12

a) 

Iteration 1: Check element at index 0.  -7 is not 7.

Iteration 2: Check element at index 1.  1 is not 7.

Iteration 3: Check element at index 2.  3 is not 7.

Iteration 4: Check element at index 3.  3 is not 7.

Iteration 5: Check element at index 4.  4 is not 7.

Iteration 6: Check element at index 5.  7 is found.  Done.

b)

Step 1: Check element at index 4 ((0 + 8) / 2).  4 < 8, look in larger half (7 8 11 13).
Step 2: Check element at index 6 ((5 + 8) / 2). 8 == 8.  Done.

c)

Step 1: Check element at index 3 ((0 + 7) / 2). 3 < 8, look in larger half (5 7 10 13).

Step 2: Check element at index 5 ((4 + 7) / 2). 7 < 8, look in larger half (10, 13).

Step 3: Check element at index 6 ((6 + 7) / 2). 10 > 8, look in smaller half, but smaller half is empty.  Value is not found. 
R14.13

To look at each a[i] in turn requires n steps, where n is the length of the array. Each of these steps requires n - 1 element visits for the counting, and on average n / 2 steps for the element removal. Therefore, this is an 
O(n·(n – 1 + n/2)) = O(n2) algorithm.

R14.14

In the merging step, the items from both lists have to be compared as we remove them from the lists to create the sorted array. If the item being removed is the same as the last item added, we have to throw it way (it is a duplicate). This extra step takes O(n). Overall the new merge sort algorithm takes O(n log(n)) to complete.

R14.15

Sorting takes O(n log(n)) time. After the array is sorted, we traverse it.

If we detect adjacent duplicates, we must move the remainder of the array down, which takes on average n/2 steps. So in the worst case this might be an O(n log n + n·n/2) = O(n2) algorithm.

However, you can easily do better. Sort the array O(n log(n)). Traverse the array, and whenever the next element is strictly larger, append it into a second array (O(n)). Then copy the second array back into the first (O(n)). The result is an O(n log(n)) algorithm. (You can even avoid the second array by moving the elements to the head of the original array.)

R14.16

The trouble is that we can't sort the array since that would disturb the original order. However, we can sort a copy to have a fast lookup for duplicates. Here is the algorithm.

Make a copy (O(n)) and sort it (O(n log(n))). Make a companion boolean array to the sorted array and set all values in that array to false. Traverse the array and do the following n times:

For each element, use binary search in the copy (O(log (n))) and then look at the neighbors to determine whether the element is a duplicate. If so, check if the corresponding value in the companion array is false, indicating that this element has never been used previously. If the element is not a duplicate or it has never been used, then append it to a second array, and mark the corresponding boolean as true. Since this needs to be done for each element, we have O(n log(n)) for this phase. The total time complexity is therefore O(n log(n)).
R14.17

Selection sort has O(n2), even when the array is already sorted.  Selection sort works by building a sorted prefix of the array.  It does this by searching for the smallest value in the (suffix) portion of the array to find the next value to add to the known sorted prefix.  The algorithm has no mechanism to determine that the assumed unsorted portion is actually sorted.  As such, the entirety of the assumed unsorted portion will be searched on each iteration.

On the other hand, insertion sort assumes the array is already sorted, and when it is, it iterates only once through the array. Iteration sort realizes this assumption as it iterates by attempting to insert the next value in the array (as the elements are traversed) into the known sorted prefix.  With the array already sorted, inserting the next value will take constant time (the time to compare to the last value in the known sorted portion).  Thus, in the case that the array is already sorted, insertion sort has O(n).

R14.18

No, it does not. The insertion sort algorithm finds the position where the element needs to be inserted at the same time that it moves the elements that need to be moved to make space for the new element. Thus, it does not actually take any extra iterations to find the position. Using a binary search will find the insertion position in O(log (n)) but will not improve the O(n2) order of the algorithm because the elements will still need to be moved to allow insertion of the element which takes O(n).

R14.19

Because there are two nested loops, the running time is O(n2).  More specifically, the inner loop must compare each pair of adjacent elements which is a O(n) operation.  The outer loop continues as long as the array is not sorted, but determining if an array is sorted is also a O(n) operation.  Thus, the algorithm is O(n2).
R14.20

The running time of radix sort on n numbers with d digits is O(n * d). It is preferable to merge sort when the number of digits, d, is less than log(n) and when the array is not too large because of the memory required for the auxiliary arrays.
R14.21

Selection sort is not stable, because the order of occurrence of the same key is hard to maintain after swap.  Specifically, swapping the next value in the array with the smallest in the remaining portion of the array may place a duplicate (the next value) later in the array than another element of the same value.

Because multiple keys with the same value are placed in the sorted array in the same order that they appear in the input array, insertion sort is stable.  In particular, insertion sort shifts values into the sorted portion of the array from the right.  A value will only shift to the left if it is less than the value to its left.  As such, when a value meets a duplicate, it remains after the duplicate as it was in the original array.
R14.22

Create an array of 256 counters initially set to 0.  Iterate through the array of n bytes.  For each element, increment the counter at the corresponding index in the counter array (i.e., element i of the byte array is used as an index into the counter array (map the bytes to the range 0 to 255)).  This step takes O(n) to analyze each element in the byte array.  Iterate through the counter array and for each counter add an equal number of entries in the byte array with value corresponding to the counter position (i.e., the counter at index 0 with value 7 will result in 7 entries in the byte array with value -128).  This step also takes O(n) to update each of the entries in the byte array.  The algorithm is O(n).
R14.23

Let's first make a single array of pairs (word, page). If there are n words (in all arrays together), that takes O(n) time. Then sort the pairs by word, breaking ties by page. That takes O(n log(n)) time. Finally, rewrite into an array of pairs (word, page set). This can again be done in O(n) time. (Note that duplicates can be removed in constant time since the pages are already sorted.)  This gives a total of O(n log(n)) time.
R14.24

Sort the second array, which takes O(n log(n)) time. For each element of the first array, try binary search across the other array. If you find it, report that there exists a match. Since there are n elements and each binary search takes O(log(n)) time, the running time will at most be O(n log(n)).

R14.25

(The previous solution used an additional array, which is unnecessary unless the original array must remain unchanged.)
Sort the array, which takes O(n log(n)) time.  For each element x in the array, perform a binary search to find v - x in the array.  If found, then x and v - x are both in the array.  This step takes n binary searches, each of which takes O(log(n)), for a total of O(n log(n)).
R14.26

Sort the second array, which takes O(n log(n)) time. For each element of the first array, try binary search across the other array. Collect each match. Since there are n elements and each binary search takes O(log(n)) time, the total running time will be O(n log(n)).
R14.27

For a sorted array, the running time will be linear O(n log(n)).  The fact that the array is sorted does give a perfect partitioning at each step (meaning there will be log(n) levels of recursion), but each step must still examine every element of the subarray during the partitioning phase (though no values will be swapped).
R14.28

If the pivot is in the middle, the running time would be O(n2) for an array in which the successive pivot values are in sorted order.  For instance, the array 2 6 4 1 3 5 7 will use the value 1 as the first pivot (the solution in Special Topic 14.3 can be used mostly as is by swapping the element at the pivot with the first element before partitioning).  This results in a partitioning with one subarray holding all remaining values 6 4 2 3 5 7.  Again, the pivot selected leaves one subarray holding all remaining values 4 6 3 5 7.  The split on pivot 3 gives 6 4 5 7; split on pivot 4 gives 6 5 7; the split on 5 gives 6 7; and splitting on 6 gives 7.  As illustrated, the length of the partition is one less than the previous partition.  This results in O(n) levels of recursion with O(n) steps in the partitioning process at each level.
1
© John Wiley & Sons, Inc. All rights reserved.  1

